首页|滚动|国内|国际|运营|制造|监管|原创|业务|技术|报告|测试|博客|特约记者
手机|互联网|IT|5G|光通信|LTE|云计算|芯片|电源|虚拟运营商|移动互联网|会展
首页 >> 移动互联网 >> 正文

阿里云贾扬清:如何三步实现AI工程化

2021年10月25日 11:30  CCTIME飞象网  

“通过数据和算力的云原生化,调度和分布式编程范式的规模化,上层算法开发和服务标准化和普适化建设,三步实现AI工程化。”10月21日,阿里巴巴副总裁,阿里云计算平台事业部高级研究员,达摩院 AI 平台负责人贾扬清在云栖大会AI工程化技术峰会现场表示,随着数据的爆发,单位数据价值降低,人工智能在持续探索如何用更高效的办法,辅助开发者进行大规模计算和数据管理,企业需要用好AI工程化能力,提升开发和经营效率。

在感知智能向决策智能发展的今天,大模型成为趋势,AI开发平台的普惠性兼容性、数据标注的智能化、模型优化,成为AI工程化开发的核心能力。2021杭州云栖大会的AI工程化技术峰会汇集了AI业内大咖,阿里巴巴AI技术专家联手合作伙伴,共同分享AI工程化趋势、AI工程化平台架构、智能标注及自动编译技术、行业领头羊企业实战方案等热门话题。

人工智能得到了爆发式的发展,算法以及背后的工程体系更加的收拢,深度学习应用开发的门槛进一步下降,算法结构创新不那么高不可攀,同时,大规模预训练模型以及从大模型进行场景化蒸馏,进而产生垂直场景的AI应用。那么,如何能够将AI的工程化做到更大普惠化,AI工程如何能够有效支撑超大规模预训练,成为人工智能研发的关键,也成为AI工程化支撑企业使用AI技术的关键。

阿里云机器学习平台PAI,面向企业客户及开发者,提供轻量化、高性价比的云原生机器学习平台,涵盖PAI-Studio可视化建模、PAI-DSW交互式建模、PAI-DLC分布式训练AI基础平台,以及PAI-EAS弹性推理平台,实现从模型构建、训练到在线部署的全流程,全面提升企业AI工程效率。经过多年沉淀,PAI平台提供成熟的行业解决方案,已经在智能推荐、用户增长、端侧超分、自动驾驶等众多场景成熟商用,成为众多企业的优选服务。

未来,大规模预训练模型+小样本蒸馏的模型开发流程将成为主流。阿里巴巴会持续进行AI工程化建设。由系统来优化如何高效、低成本来执行模型训练和推理,帮助企业实现高效的数智化转型。

编 辑:T01
声明:刊载本文目的在于传播更多行业信息,本站只提供参考并不构成任何投资及应用建议。如网站内容涉及作品版权和其它问题,请在30日内与本网联系,我们将在第一时间删除内容。本站联系电话为86-010-87765777,邮件后缀为#cctime.com,冒充本站员工以任何其他联系方式,进行的“内容核实”、“商务联系”等行为,均不能代表本站。本站拥有对此声明的最终解释权。
相关新闻              
 
人物
刘韵洁:互联网下半场面向“实体经济融合”的重大变革机遇
精彩专题
专题报道丨2020年世界电信和信息社会日
专题报道丨山至高处人为峰,中国5G信号覆盖珠穆朗玛
专题报道丨助力武汉"战疫",共铸坚强后盾
2019年信息通信产业盘点暨颁奖礼
CCTIME推荐
关于我们 | 广告报价 | 联系我们 | 隐私声明 | 本站地图
CCTIME飞象网 CopyRight © 2007-2021 By CCTIME.COM
京ICP备08004280号-1  电信与信息服务业务经营许可证080234号 京公网安备110105000771号
公司名称: 北京飞象互动文化传媒有限公司
未经书面许可,禁止转载、摘编、复制、镜像