首页|必读|视频|专访|运营|制造|监管|大数据|物联网|量子|低空经济|智能汽车|特约记者
手机|互联网|IT|5G|光通信|人工智能|云计算|芯片|报告|智慧城市|移动互联网|会展
首页 >> 终端 >> 正文

苹果联合研究照亮多模态 AI 未来方向:早期融合 + 稀疏架构

2025年4月16日 15:38  IT之家  作 者:故渊

科技媒体 marktechpost 昨日(4 月 15 日)发布博文,报道称苹果工程师联合法国索邦大学,通过对比早期融合和后期融合模型,发现从头训练的早期融合模型在计算效率和扩展性上更具优势。

多模态 AI 现状与面临的挑战

IT之家援引博文介绍,多模态 AI 旨在同时处理图像、文本等多种数据类型,但整合这些异构数据仍是一大难题。当前技术多采用后期融合(late-fusion)策略,即组合使用预训练的单模态模型(如视觉编码器和语言模型)。

这种方法虽然操作简便,却难以实现真正的多模态理解,单模态预训练带来的固有偏差,可能限制模型捕捉跨模态依赖关系。

此外,随着系统规模扩大,各组件的参数、预训练需求和扩展特性差异显著,导致计算资源分配复杂,影响性能,尤其是在需要深度多模态推理的任务中。

早期融合与稀疏架构的突破

苹果联合团队挑战了传统架构选择,深入研究从头训练的原生多模态模型(NMMs)的扩展特性。

团队对比了早期融合(early-fusion)和后期融合模型,发现从头训练时,两者性能相当,但早期融合模型在低计算预算下更高效且易于扩展。

研究还探索了专家混合(MoE)稀疏架构,发现其能动态分配参数,针对不同模态进行专项优化,相较于稠密模型,可以显著提升性能,这点在小规模模型中优势明显。

分析显示,稀疏模型更倾向于优先扩展训练数据(training tokens)而非活跃参数(active parameters),这与稠密模型的扩展模式形成鲜明对比。

研究团队通过系统实验,训练了从 0.3 亿到 40 亿活跃参数的多模态模型,验证了早期融合和稀疏架构在多模态处理中的潜力。

结果表明,原生多模态模型的扩展规律与语言模型相似,但跨模态数据类型和训练组合会略微影响扩展系数。此外,稀疏模型在等效推理成本下持续优于密集模型,展现出处理异构数据的强大能力。

这些发现挑战了传统设计理念,表明统一早期融合架构结合动态参数分配,或将成为未来高效多模态 AI 系统的重要方向。

编 辑:章芳
飞象网版权及免责声明:
1.本网刊载内容,凡注明来源为“飞象网”和“飞象原创”皆属飞象网版权所有,未经允许禁止转载、摘编及镜像,违者必究。对于经过授权可以转载,请必须保持转载文章、图像、音视频的完整性,并完整标注作者信息和飞象网来源。
2.凡注明“来源:XXXX”的作品,均转载自其它媒体,在于传播更多行业信息,并不代表本网赞同其观点和对其真实性负责。
3.如因作品内容、版权和其它问题,请在相关作品刊发之日起30日内与本网联系,我们将第一时间予以处理。
本站联系电话为86-010-87765777,邮件后缀为cctime.com,冒充本站员工以任何其他联系方式,进行的“内容核实”、“商务联系”等行为,均不能代表本站。本站拥有对此声明的最终解释权。
推荐新闻              
 
人物
高通徐晧:利用6G和AI重塑移动连接的未来
精彩视频
全球6G大会|高通展示三大6G原型系统 更好服务智能时代
6G技术新突破!6G全息超表面宽带移动通信系统样机发布
全球6G大会 | 中国通信标准化协会闻库:5G垂直应用痛点值得挖掘,设计6G时要加以考虑
全球6G大会 | 高通徐晧:“人工智能+6G”带来更多应用场景 中国6G占据优势
精彩专题
通信产业2024年业绩盘点
3·15权益日 | 共筑满意消费 守护信息通信安全防线
聚焦2025全国两会
2025年世界移动通信大会
关于我们 | 广告报价 | 联系我们 | 隐私声明 | 本站地图
CCTIME飞象网 CopyRight © 2007-2024 By CCTIME.COM
京ICP备08004280号-1  电信与信息服务业务经营许可证080234号 京公网安备110105000771号
公司名称: 北京飞象互动文化传媒有限公司
未经书面许可,禁止转载、摘编、复制、镜像