首页|必读|视频|专访|运营|制造|监管|芯片|物联网|量子|低空经济|智能汽车|特约记者
手机|互联网|IT|5G|光通信|人工智能|云计算|大数据|报告|智慧城市|移动互联网|会展
首页 >> 人工智能 >> 正文

微软携手清华、北大推出奖励推理模型:根据 AI 任务复杂性动态分配计算资源

2025年5月27日 15:36  IT之家  作 者:故渊

科技媒体 marktechpost 今天(5 月 27 日)发布博文,报道称微软研究院联合清华大学、北京大学组建团队,推出奖励推理模型(Reward Reasoning Models,RRMs),通过显式推理过程动态分配计算资源,提升复杂任务评估效果。

援引博文介绍,强化学习(Reinforcement Learning,RL)已成为大语言模型(LLM)后训练的核心方法,通过人类反馈(RLHF)或可验证奖励(RLVR)提供监督信号。

然而,RLVR 在数学推理中虽有潜力,却因依赖可验证答案的训练查询而受限,难以应用于通用领域的大规模训练。

此外,现有奖励模型分为标量型和生成型两大类,均无法有效扩展测试时的计算资源。当前方法对所有输入统一分配计算资源,缺乏针对复杂查询进行细致分析的能力,导致评估效果不佳。

为解决上述问题,微软研究院、清华大学和北京大学的研究者联手推出奖励推理模型(RRMs)。RRMs 在给出最终奖励前执行显式推理过程,能够根据任务复杂性自适应分配额外计算资源。

这种方法通过“思维链”(Chain-of-Thought)推理,针对奖励不明显的复杂查询投入更多测试时计算资源。

RRMs 基于 Qwen2 模型,采用 Transformer-decoder 架构,将奖励建模转化为文本补全任务,生成推理过程后给出最终判断。

研究团队利用 RewardBench 库进行系统分析,评估指标包括指令遵循性、帮助性、准确性、无害性和细节水平。RRMs 还支持多响应评估,通过 ELO 评分系统和淘汰赛机制,结合多数投票提升计算资源利用率。

测试结果显示,RRMs 在 RewardBench 和 PandaLM Test 基准测试中表现突出。其中,RRM-32B 在推理类别中达到 98.6% 的准确率,与使用相同数据训练的 DirectJudge 模型相比,RRMs 展现出显著性能差距,证明其在复杂查询中有效利用测试时计算资源。

在奖励引导的最佳 N 推理(Best-of-N Inference)和后训练反馈中,RRMs 超越所有基线模型,且进一步提升多数投票机制效率。

研究还表明,随着模型规模从 7B、14B 到 32B 扩展,更长的推理时间始终带来准确性提升。RRMs 通过并行和顺序扩展方法高效利用计算资源,为传统标量奖励模型提供强大替代方案。

编 辑:章芳
飞象网版权及免责声明:
1.本网刊载内容,凡注明来源为“飞象网”和“飞象原创”皆属飞象网版权所有,未经允许禁止转载、摘编及镜像,违者必究。对于经过授权可以转载,请必须保持转载文章、图像、音视频的完整性,并完整标注作者信息和飞象网来源。
2.凡注明“来源:XXXX”的作品,均转载自其它媒体,在于传播更多行业信息,并不代表本网赞同其观点和对其真实性负责。
3.如因作品内容、版权和其它问题,请在相关作品刊发之日起30日内与本网联系,我们将第一时间予以处理。
本站联系电话为86-010-87765777,邮件后缀为cctime.com,冒充本站员工以任何其他联系方式,进行的“内容核实”、“商务联系”等行为,均不能代表本站。本站拥有对此声明的最终解释权。
推荐新闻              
 
人物
中兴通讯首席发展官崔丽:数智赋能 共拓中拉合作新路径
精彩视频
2025工业互联网大会 | 深化赋能 工业互联网产业成果发布
2025工业互联网大会 | 六大重要成果发布 产业变革再添“强引擎”
工业互联网发展也太给力了!走,看看到底怎么回事?
中国信通院赵爽:加快工业互联网安全体系建设 护航新型工业化行稳致远
精彩专题
2025工业互联网大会
2025世界电信和信息社会日大会
第八届数字中国建设峰会
通信产业2024年业绩盘点
关于我们 | 广告报价 | 联系我们 | 隐私声明 | 本站地图
CCTIME飞象网 CopyRight © 2007-2024 By CCTIME.COM
京ICP备08004280号-1  电信与信息服务业务经营许可证080234号 京公网安备110105000771号
公司名称: 北京飞象互动文化传媒有限公司
未经书面许可,禁止转载、摘编、复制、镜像