首页|必读|视频|专访|运营|制造|监管|芯片|物联网|量子|低空经济|智能汽车|特约记者
手机|互联网|IT|5G|光通信|人工智能|云计算|大数据|报告|智慧城市|移动互联网|会展
首页 >> 移动互联网 >> 正文

聚焦大模型训练效率提升 北大依托昇腾突破细粒度混合并行技术

2025年8月1日 15:31  CCTIME飞象网  

在人工智能大模型迅猛发展的当下,大模型参数和计算量呈指数级增长,大规模深度学习模型的训练离不开多硬件设备的分布式计算。在鲲鹏昇腾科教创新卓越中心的算力支持下,北京大学计算机学院崔斌教授团队创新研发了面向大模型的高效分布式训练框架,大幅提升了大规模分布式训练模型的效率。

针对模型训练任务的多样性和复杂性所带来的负载不均问题,研究团队创新设计出了细粒度模型切分与并行策略搜索算法。此方法依托昇腾强大的计算资源管理能力,及算子优化技术对训练策略的适配,完成了统一训练接口到智能切分策略的全过程。首先通过总结多种大模型训练的共同特点,设计出统一的接口来启动和管理不同任务负载的模型训练任务,对训练时所花费的算力、内存、网络通信等进行精确地计算。接着基于这些数据细致拆解庞大且复杂的大模型,根据不同模块分配不同的训练策略以适应各模块的负载差异,实现训练任务的高效并行。目前,该方案已实现比分片数据并行、3D 并行等全局模版化并行方案提升15% 的训练效率。

除此之外,团队还解决了分布式计算所涉及的硬件间通信传输效率问题。结合昇腾高速互联总线技术的高带宽低时延优势,系统会很根据不同的通信需求,对硬件设备进行分组以优化组队时间,运用计算通信重叠技术让“计算”和“通信”同步进行,提高训练流水线的效率,并在模型切分的决策时考虑计算通信重叠的性能影响,综合多方面因素选取最适合的分布式运行方案,最终实现数据传输效率和资源利用率的最大化。

该研究成果不仅为模型大规模训练提供了高效的解决方案,更展现了自主算力在分布式计算领域的巨大潜力。目前,研究成果已在国际顶级学术会议NeurIPS、ICLR、AAAI发表3篇论文,为国内AI技术突破提供了理论支撑与实践范式。

北京大学 鲲鹏昇腾科教创新卓越中心的这一突破彰显了校企协同创新的显著成效。未来,中心将持续加速AI前沿技术在自主计算平台的深度落地,为我国人工智能产业的自主化突破提供强劲动能。

编 辑:T01
飞象网版权及免责声明:
1.本网刊载内容,凡注明来源为“飞象网”和“飞象原创”皆属飞象网版权所有,未经允许禁止转载、摘编及镜像,违者必究。对于经过授权可以转载,请必须保持转载文章、图像、音视频的完整性,并完整标注作者信息和飞象网来源。
2.凡注明“来源:XXXX”的作品,均转载自其它媒体,在于传播更多行业信息,并不代表本网赞同其观点和对其真实性负责。
3.如因作品内容、版权和其它问题,请在相关作品刊发之日起30日内与本网联系,我们将第一时间予以处理。
本站联系电话为86-010-87765777,邮件后缀为cctime.com,冒充本站员工以任何其他联系方式,进行的“内容核实”、“商务联系”等行为,均不能代表本站。本站拥有对此声明的最终解释权。
推荐新闻              
 
人物
中国电信柯瑞文:星辰智惠 共治共享
精彩视频
2025WAIC|探馆中国电信展台 AI全景图 满满“科技范儿”
中国电信总经理刘桂清:星辰智惠,共治共享,赋能产业变革新未来
中国电信柯瑞文:打造全方位人工智能动态防护体系,构建共创、共治、共享的产业生态
2025世界人工智能大会:才艺比拼、技能比武!机器人“大显身手”
精彩专题
2025世界人工智能大会暨人工智能全球治理高级别会议
2025中国联通合作伙伴大会
2025 MWC 上海
2025工业互联网大会
关于我们 | 广告报价 | 联系我们 | 隐私声明 | 本站地图
CCTIME飞象网 CopyRight © 2007-2024 By CCTIME.COM
京ICP备08004280号-1  电信与信息服务业务经营许可证080234号 京公网安备110105000771号
公司名称: 北京飞象互动文化传媒有限公司
未经书面许可,禁止转载、摘编、复制、镜像